Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Biodegradable polyphosphoester micelles for gene delivery

Identifieur interne : 002012 ( Main/Exploration ); précédent : 002011; suivant : 002013

Biodegradable polyphosphoester micelles for gene delivery

Auteurs : Jie Wen [États-Unis] ; Hai-Quan Mao [États-Unis] ; Weiping Li [États-Unis] ; Kevin Y. Lin [États-Unis] ; Kam W. Leong [États-Unis]

Source :

RBID : ISTEX:0D4D79FA882A9C0B89C6E604CC01E0CC4A10913E

English descriptors

Abstract

A new biodegradable polyphosphoester, poly{[(cholesteryl oxocarbonylamido ethyl) methyl bis(ethylene) ammonium iodide] ethyl phosphate} (PCEP) was synthesized and investigated for gene delivery. Carrying a positive charge in its backbone and a lipophilic cholesterol structure in the side chain, PCEP self‐assembled into micelles in aqueous buffer at room temperature with an average size of 60–100 nm. It could bind and protect plasmid DNA from nuclease digestion. Cell proliferation assay indicated a lower cytotoxicity for PCEP than for poly‐L‐lysine and Lipofectamine. The IC50 determined by the WST‐1 assay was 69.8, 51.6, and 12.1 μg/mL for PCEP, Lipofectamine, and poly‐L‐lysine, respectively. PCEP efficiently delivered DNA to several cell lines such as HEK293, Caco‐2, and HeLa. The highest efficiency was achieved when PCEP/DNA complex was prepared in Opti‐MEM with a +/− charge ratio of 1.5–2. The transfection efficiency did not change significantly when the complex was used 3 days after preparation. The addition of chloroquine to the formulation increased transfection efficiency 10‐ to 50‐fold compared to the complex alone. In vivo studies showed a luciferase expression by PCEP/DNA complexes in muscle increasing with time during 3 months, although the expression level was lower than that by direct injection of naked DNA. In addition to biodegradability and lower toxicity, the PCEP micelle carrier offers structural versatility. The backbone charge density and the side chain lipophilicity are two parameters that can be varied through copolymerization and monomer variation to optimize the transfection efficiency. © 2004 Wiley‐Liss, Inc. and the American Pharmacists Association J Pharm Sci 93:2142–2157, 2004

Url:
DOI: 10.1002/jps.20121


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Biodegradable polyphosphoester micelles for gene delivery</title>
<author>
<name sortKey="Wen, Jie" sort="Wen, Jie" uniqKey="Wen J" first="Jie" last="Wen">Jie Wen</name>
</author>
<author>
<name sortKey="Mao, Hai Uan" sort="Mao, Hai Uan" uniqKey="Mao H" first="Hai-Quan" last="Mao">Hai-Quan Mao</name>
</author>
<author>
<name sortKey="Li, Weiping" sort="Li, Weiping" uniqKey="Li W" first="Weiping" last="Li">Weiping Li</name>
</author>
<author>
<name sortKey="Lin, Kevin Y" sort="Lin, Kevin Y" uniqKey="Lin K" first="Kevin Y." last="Lin">Kevin Y. Lin</name>
</author>
<author>
<name sortKey="Leong, Kam W" sort="Leong, Kam W" uniqKey="Leong K" first="Kam W." last="Leong">Kam W. Leong</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:0D4D79FA882A9C0B89C6E604CC01E0CC4A10913E</idno>
<date when="2004" year="2004">2004</date>
<idno type="doi">10.1002/jps.20121</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-0Z7NR84F-D/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000D08</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000D08</idno>
<idno type="wicri:Area/Istex/Curation">000D08</idno>
<idno type="wicri:Area/Istex/Checkpoint">000E53</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000E53</idno>
<idno type="wicri:doubleKey">0022-3549:2004:Wen J:biodegradable:polyphosphoester:micelles</idno>
<idno type="wicri:Area/Main/Merge">002027</idno>
<idno type="wicri:Area/Main/Curation">002012</idno>
<idno type="wicri:Area/Main/Exploration">002012</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Biodegradable polyphosphoester micelles for gene delivery</title>
<author>
<name sortKey="Wen, Jie" sort="Wen, Jie" uniqKey="Wen J" first="Jie" last="Wen">Jie Wen</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mao, Hai Uan" sort="Mao, Hai Uan" uniqKey="Mao H" first="Hai-Quan" last="Mao">Hai-Quan Mao</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Li, Weiping" sort="Li, Weiping" uniqKey="Li W" first="Weiping" last="Li">Weiping Li</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lin, Kevin Y" sort="Lin, Kevin Y" uniqKey="Lin K" first="Kevin Y." last="Lin">Kevin Y. Lin</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Leong, Kam W" sort="Leong, Kam W" uniqKey="Leong K" first="Kam W." last="Leong">Kam W. Leong</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore</wicri:cityArea>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Correspondence address: Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore</wicri:cityArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Pharmaceutical Sciences</title>
<title level="j" type="alt">JOURNAL OF PHARMACEUTICAL SCIENCES</title>
<idno type="ISSN">0022-3549</idno>
<idno type="eISSN">1520-6017</idno>
<imprint>
<biblScope unit="vol">93</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="2142">2142</biblScope>
<biblScope unit="page" to="2157">2157</biblScope>
<biblScope unit="page-count">16</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2004-08">2004-08</date>
</imprint>
<idno type="ISSN">0022-3549</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-3549</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Ammonium</term>
<term>Amphiphilic</term>
<term>Aqueous buffer</term>
<term>Assay</term>
<term>August</term>
<term>Bioconjugate chem</term>
<term>Biodegradable</term>
<term>Biodegradable polyphosphoester micelles</term>
<term>Block copolymer micelles</term>
<term>Cationic</term>
<term>Cationic lipid</term>
<term>Cationic lipids</term>
<term>Cationic liposomes</term>
<term>Cationic polymers</term>
<term>Cell membrane</term>
<term>Charge ratio</term>
<term>Charge ratios</term>
<term>Chem</term>
<term>Chloroquine</term>
<term>Cholesteryl</term>
<term>Complex preparation</term>
<term>Confocal</term>
<term>Confocal images</term>
<term>Confocal microscopy</term>
<term>Copolymer</term>
<term>Cytotoxicity</term>
<term>Degradation</term>
<term>Different cell lines</term>
<term>Different charge ratios</term>
<term>Different time points</term>
<term>Dmem medium</term>
<term>Dnase</term>
<term>Encoding</term>
<term>Ethidium bromide</term>
<term>Ethyl dichlorophosphate</term>
<term>Ethyl phosphate</term>
<term>Expression level</term>
<term>Gene</term>
<term>Gene carrier</term>
<term>Gene delivery</term>
<term>Gene delivery system</term>
<term>Gene expression</term>
<term>Gene transfer</term>
<term>Hela</term>
<term>Hela cells</term>
<term>Leong</term>
<term>Light units</term>
<term>Lipid</term>
<term>Lipofectamine</term>
<term>Lipophilic cholesterol structure</term>
<term>Liposome</term>
<term>Lower cytotoxicity</term>
<term>Luciferase</term>
<term>Luciferase activity</term>
<term>Methyl ammonium iodide</term>
<term>Micelle</term>
<term>Mmol</term>
<term>Molecular weight</term>
<term>Nonviral</term>
<term>Nonviral gene delivery</term>
<term>Oral delivery</term>
<term>Pcep</term>
<term>Pcep micelles</term>
<term>Pharmaceutical</term>
<term>Pharmaceutical sciences</term>
<term>Plasmid</term>
<term>Polymer</term>
<term>Polymeric micelles</term>
<term>Polyphosphoester</term>
<term>Positive charge</term>
<term>Proc natl acad</term>
<term>Room temperature</term>
<term>Side chain</term>
<term>Small intestine</term>
<term>Standard deviations</term>
<term>Tibialis</term>
<term>Tibialis muscle</term>
<term>Tibialis muscles</term>
<term>Transfected</term>
<term>Transfected cells</term>
<term>Transfection</term>
<term>Transgene</term>
<term>Transgene expression</term>
<term>Uorescent protein</term>
<term>Zeta</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A new biodegradable polyphosphoester, poly{[(cholesteryl oxocarbonylamido ethyl) methyl bis(ethylene) ammonium iodide] ethyl phosphate} (PCEP) was synthesized and investigated for gene delivery. Carrying a positive charge in its backbone and a lipophilic cholesterol structure in the side chain, PCEP self‐assembled into micelles in aqueous buffer at room temperature with an average size of 60–100 nm. It could bind and protect plasmid DNA from nuclease digestion. Cell proliferation assay indicated a lower cytotoxicity for PCEP than for poly‐L‐lysine and Lipofectamine. The IC50 determined by the WST‐1 assay was 69.8, 51.6, and 12.1 μg/mL for PCEP, Lipofectamine, and poly‐L‐lysine, respectively. PCEP efficiently delivered DNA to several cell lines such as HEK293, Caco‐2, and HeLa. The highest efficiency was achieved when PCEP/DNA complex was prepared in Opti‐MEM with a +/− charge ratio of 1.5–2. The transfection efficiency did not change significantly when the complex was used 3 days after preparation. The addition of chloroquine to the formulation increased transfection efficiency 10‐ to 50‐fold compared to the complex alone. In vivo studies showed a luciferase expression by PCEP/DNA complexes in muscle increasing with time during 3 months, although the expression level was lower than that by direct injection of naked DNA. In addition to biodegradability and lower toxicity, the PCEP micelle carrier offers structural versatility. The backbone charge density and the side chain lipophilicity are two parameters that can be varied through copolymerization and monomer variation to optimize the transfection efficiency. © 2004 Wiley‐Liss, Inc. and the American Pharmacists Association J Pharm Sci 93:2142–2157, 2004</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Wen, Jie" sort="Wen, Jie" uniqKey="Wen J" first="Jie" last="Wen">Jie Wen</name>
</region>
<name sortKey="Leong, Kam W" sort="Leong, Kam W" uniqKey="Leong K" first="Kam W." last="Leong">Kam W. Leong</name>
<name sortKey="Leong, Kam W" sort="Leong, Kam W" uniqKey="Leong K" first="Kam W." last="Leong">Kam W. Leong</name>
<name sortKey="Leong, Kam W" sort="Leong, Kam W" uniqKey="Leong K" first="Kam W." last="Leong">Kam W. Leong</name>
<name sortKey="Li, Weiping" sort="Li, Weiping" uniqKey="Li W" first="Weiping" last="Li">Weiping Li</name>
<name sortKey="Lin, Kevin Y" sort="Lin, Kevin Y" uniqKey="Lin K" first="Kevin Y." last="Lin">Kevin Y. Lin</name>
<name sortKey="Mao, Hai Uan" sort="Mao, Hai Uan" uniqKey="Mao H" first="Hai-Quan" last="Mao">Hai-Quan Mao</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002012 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002012 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:0D4D79FA882A9C0B89C6E604CC01E0CC4A10913E
   |texte=   Biodegradable polyphosphoester micelles for gene delivery
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021